Fast Computation of Moore-Penrose Inverse Matrices
نویسنده
چکیده
Many neural learning algorithms require to solve large least square systems in order to obtain synaptic weights. Moore-Penrose inverse matrices allow for solving such systems, even with rank deficiency, and they provide minimum-norm vectors of synaptic weights, which contribute to the regularization of the input-output mapping. It is thus of interest to develop fast and accurate algorithms for computing Moore-Penrose inverse matrices. In this paper, an algorithm based on a full rank Cholesky factorization is proposed. The resulting pseudoinverse matrices are similar to those provided by other algorithms. However the computation time is substantially shorter, particularly for large systems. KeywordsRank Deficient Least Square Systems, Moore-Penrose Inverse, Pseudoinverse, Generalized Inverse, Neural Learning, Minimum-norm Synaptic Weight Vectors, Regularization.
منابع مشابه
Symbolic computation of weighted Moore-Penrose inverse using partitioning method
We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...
متن کاملEla Fast Computing of the Moore - Penrose Inverse Matrix
In this article a fast computational method is provided in order to calculate the Moore-Penrose inverse of full rank m× n matrices and of square matrices with at least one zero row or column. Sufficient conditions are also given for special type products of square matrices so that the reverse order law for the Moore-Penrose inverse is satisfied.
متن کاملFast computing of the Moore-Penrose inverse matrix
In this article a fast computational method is provided in order to calculate the Moore-Penrose inverse of full rank m× n matrices and of square matrices with at least one zero row or column. Sufficient conditions are also given for special type products of square matrices so that the reverse order law for the Moore-Penrose inverse is satisfied.
متن کاملThe reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules
Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...
متن کاملAbout the generalized LM-inverse and the weighted Moore-Penrose inverse
The recursive method for computing the generalized LM inverse of a constant rectangular matrix augmented by a column vector is proposed in [16, 17]. The corresponding algorithm for the sequential determination of the generalized LM -inverse is established in the present paper. We prove that the introduced algorithm for computing the generalized LM inverse and the algorithm for the computation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0804.4809 شماره
صفحات -
تاریخ انتشار 2005